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J. Phys. A: Math. Gen. 16 (1983) 2587-2598. Printed in Great Britain 

Finite temperature and density corrections to quantum 
electrodynamics? 

Jerzy Zdzislaw Kamiliski$ 
Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland 

Received 16 November 1982 

Abstract. The effective Lagrangian and the electric current of quantum electrodynamics 
(QED) at weak electromagnetic (EM)  field and low temperature is investigated. With the 
help of the effective Lagrangian the permittivity and permeability are obtained. The 
effective potential at finite temperature and density induced by the classical Coulomb 
potential is also obtained. It is shown that the heat corrections modify the Coulomb 
potential to such an extent that the effective potential adopts the Yukawa form. Some 
remarks are made about the electron g factor at finite temperature and density. 

1. Introduction 

Interest in the finite temperature and density corrections to the models of quantum 
field theory has been initiated by the suggestion of Kirzhnits and Linde (1972) that 
a spontaneously broken symmetry, in a relativistic field theory coupled to a finite- 
temperature heat bath, could be restored above some critical temperature; and by 
the qualitative calculations performed in the one-loop approximation by Weinberg 
(1974) and Dolan and Jackiw (1974). It has also been recognised that a similar 
phenomenon occurs at high density of leptons and baryons (Harrington and Yildiz 
1974). Due to the enormous mass of the Higgs boson, the aforementioned restoration 
of the spontaneously broken symmetry occurs at temperatures and densities of the 
order of 10’’ K and lo4’ ~ m - ~ ,  respectively. Such conditions can only be found in 
the early stages of the Universe; therefore, these considerations have only cosmological 
applications. 

On the other hand, taking into account the suggestion of Ritus (1978) that the 
effective Lagrangian of QED in strong EM field can be used for the investigation of 
the fundamental questions of QED (like the finiteness of the renormalisation constants), 
I have studied the finite temperature and density corrections to QED, proving that 
the effective Lagrangian at weak EM field and high temperature determines the 
Johnson-Baker-Willey function F”’O (Kaminski 1981a, 1982b), and conjecturing this 
statement in the case of weak EM field and high chemical potential with respect to 
the temperature (Kamifiski 1982b). 

The investigation of QED at finite temperature and density is important, since QED 
in a vacuum is so far the only known example of the relativistic field theory which 

f Work supported in part by the Research Programme MR.I.7. 
$ Present address: FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 S J Amsterdam, 
The Netherlands. 
5 This function plays the fundamental role in the Johnson-Baker-Willey model of QED (e.g. Adler 1972). 
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gives excellent agreement with experiment (Lautrup et a1 1972). This is the reason 
why temperature corrections to the measurable quantities are studied. 

This paper is the continuation of a previous investigation of QED at low tem- 
peratures. It was shown (Kaminski 1981b) that at more realistic temperatures 
( T  << m = 5.8 x lo9 K), temperature corrections to QED processes are extremely small 
and are proportional to a power of exp(-m/T). In this paper I show that density' 
corrections temper such a decreasing of the temperature-dependent part of the 
quantities under consideration. The finite-temperature corrections to the effective 
Lagrangian have been also investigated by Bauhoff and Dittrich (1981), and Dittrich 
(1979a, b). 

The reader who is not familiar with the finite temperature and density methods 
in QED is referred to Bechler (1981) and references therein. 

2. Effective Lagrangian 

The effective Lagrangian yeR at finite temperature and density, and constant EM field?, 
is defined by the relation: 

(1) 

where yQED and N are the QED Lagrangian and the fermion number operator 
rzspectively. yes is a function of the electric field E ,  magnetic induction B, temperature 
T =p-' and chemical potential P ( V  is the volume of the system under consideration). 
Sp denotes the sum over all possible quantum states of the EM and electron fields. 
Furthermore, we will work within the approximation of neglecting radiative correc- 
tions. This means that in (1) the summation is over the quantum states of the electron 
field. Within this approximation it is straightforward to show that (Kaminski 198 IC): 

Z d E ,  B, T, P 1 

exP@VyedE, B, T, P 1) = SP exp[+P ( ~ Q E D  + P" 

m 
=(E2-B2) /2 -T  [yIm dP dm 

n=-m ( 2 ~ )  

xTr  k& +27riT(n +$),PIE, B ]  +a (2) 
where the finite temperature and density methods have been used (Bechler 1981). 
The symbol CT denotes the contact terms, defined in such a way that the effective 
Lagrangian vanishes at vanishing E, B and T; and Tr denotes the trace of the Dirac 
matrices. Moreover, gF[po, PIE, B ]  is the Fourier transform of the Feynman propa- 
gator of the electron in the constant EM field (see appendix). With the help of (2) 
one can arrive at: 

Zes(E,B, T, ~ ) = ( E * - 8 ~ ) / 2 + y ~ ~ ( E , B ) + e r e " ' ( E , B ,  T, P )  (3) 

where the renormalisation of the electron charge has been performed. Within the 
approximation of neglecting radiative corrections, we need not perform the renormali- 
sation of the electron mass. 9::: (E, B )  is the Heisenberg-Euler correction to the 

It is sufficient if the EM field is a little changing function, 

; f g u ( f + A C ,  r + A c r / r ) - f g v ( t ,  r)l<< if,.(t, r)l 

where A ,  is the electron Compton wavelength and f u v  is the electromagnetic field tensor. 
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free Lagrangian and A9(”(E,B,  T, p )  is the finite temperature and density correction. 
The Heisenberg-Euler correction has been extensively investigated both from the 
fundamental (Dittrich 1976, 1977, Ritus 1978, Kamiliski 1981c, 1982a, Hagiwara 
1981) and the applied (Adler 1971, Biaiynicka-Birula and Bialynicki-Birula 1970, 
Mielniczuk 1982) point of view. Taking advantage of the Poisson summation formula 
(Schwartz 1966), 

5 f ( n )  = f J dxf(x)  exp(2mix)  ” = -x n = - m  

from which follows the identity 

2 exp{is[p + 2 ~ i T ( n  +$)I2} = p ( 4 ~ i s ) - ” ~ O ~ ( i P ~ / 2 ,  exp[-~@’(4~is)-’]) ,  
n =-m 

where O4 is the elliptic theta function (Abramowitz and Stegun 1965), one finds the 
following form of the finite temperature and density correction A2?(” 

U(’)= 2T4 Io dss - ’89  cot(%) coth(5Bs) exp(-nsv2) 
Lc 

x (1 - O4{i77p, exp[-& cot(%s)]}) (4) 

where 8 = eEP2/4.rr, 3 = eBP2/4n, v = mp/2n, p = @/2n, and E and B are the 
electric and magnetic fields in the Lorentz frame in which they are parallel to each other. 

At zero temperature, derivatives of the effective Lagrangian with respect to E and 
B give the electric displacement D and the magnetic field intensity H, respectively. 
These properties are assumed to be valid at finite temperature and density, i.e., by 
definition, 

D, = (a/aE,)=ZdE, B, T, P 1, ( 5 )  

Hi = (a/aBiWeff(E, B, P I* (6) 

Moreover, it follows from (1) that the number density (derived with the help of the 
electric current in the appendix) is given by 

(7) n = ( a / a ~  E e f f ( E ,  B, T, CL 1. 

3. Effective Lagrangian at low temperature and weak electric field 

This section is concerned with the low-temperature (T << 5.8 x lo9 K) and weak electric 
field ( E  << Tmle) corrections to the effective Lagrangian. With the help of (4) one finds 

m m  

n = l  k = O  
U‘’) = -4T4 1 1 (-1)” cosh(2mp) Wkn(5,3, 3) 

where 
;2 = y 2  - 5,3213 
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and 

= s2gB cot(gs) coth(3s) exp{-m2[(%) cot(%)- 1 + g2s2/3]/s}. 

Taking advantage of the integral representation of the modified Bessel functions 
(Abramowitz and Stegun 1965) 

Jom dx x ”-’ exp[-@/x) - yx] = ~ ( P / ~ ) ~ / ’ K ~ [ ~ ( P Y ) ” ~ I ,  

their asymptotic expansion 

~ ~ ( 2 )  cc (.n/2z e-‘ 

and performing the summation over the index k, we obtain 

A 2 “ )  = -4T4v’3/2 
m 

(-l)nn-5’2 cosh (2~np)  exp(-2mC) 
n = l  

x (8nv’-’)(Bnv’-’) cot(8n;-’) coth(Bnv’-’) 

x exp{-mC[%K1 cot(%nC-’) - 1 + 82n2C-2/31}. 

A 2 “ ’  = 2T4(m/2~T)3/2(eB/2mT)  coth(eB/2mT)(z- + z+) ,  

(10) 

At vanishing electric field and small p the leading term (n = 1) of (10) gives 

(11) 

where 

z+=exp[-(m *@)/TI ,  

i.e., the result I have obtained at ,u = 0 with the help of the steepest descent method 
(Kamihski 1981b). Since 

one finds the following form of the finite temperature and density correction to the 
effective Lagrangian at weak EM field: 

where F ( s )  =F(-i , ,  s)  + F ( - i _ ,  s )  and 2, = exp(-2n(C i p ) ) .  
We now consider the following cases. 
(a) P - 1 

In this case, taking only the leading term (a  = 1) of the sum (13), one obtains the 
result that could be derived with the help of the steepest descent method, i.e. the 
finite temperature and density corrections to the effective Lagrangian are extremely 
small and can be neglected. 

Using the relation 
(b) Ip -Cl<< 1 

F(-l-SZ, s) = (21-s - 1)&) + (22-s - l ) ( ( S  - 1)82, 
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where (6z 1 << 1 and [(s) is the Riemann zeta function, one obtains 

2591 

ALP) = 2 ~ ~ v ’ ~ / ~ { ( 1 -  2-3/2)&) + 2.rr(p - ;)(I - 2-1/2)& - $ v - - ~ ( $ ~  - w2) 
[(I - 2l /7& + h ( p  - ;)(I - 23/2)t(-i)1 

-&~--%~[(1 -23/2)t(-;)+27T(p -;)(I -25’2),3-$)1 

+ ~ v ’ - 4 ( 8 4 - 5 $ 2 w 2 + ~ 4 ) [ ( 1  -25/2)~(-;)+27T(p -;)(I -27/2)[(-$)]}. 
(15) 

The number density at the vanishing EM field is equal to 

n = 2(1 -2-1/2)t(~)(m~/2.rr)3/2.  

This means that in a volume of the order of 
Such densities can be encountered in the present Universe?. 

Using the relations (Bateman 1953) 

cm3 there are (T/m)3/2 fermions. 

(c) p - v’ >> 1 

F(z,  s)+e’“’F(z-’, s )  = (27~)’ r ( s ) -~  einsf2[(1 -s, (In z)/27ri) 

[(s, u)=r(s)-l[~l-srr(s - i ) + o ( ~ - y ,  Iul>> 1, 

one arrives at 

2 where Fo = m /e - l O I 3  Gs. It follows from (16) that at the vanishing EM field in the 
volume of the order of 10-39cm3 there are ( ~ / m ) ~ / ~  fermions, i.e., we encounter 
densities of the primeval cosmological matter. 

Let me summarise the results obtained in this section and write down the effective 
Lagrangian at weak EM field in the following form: 

(17) 2edE, B, T, p 1 = A o ( K  CL +$E2[1 + A f V ,  p 11 - $B2[1 + A%T, p)1, 
where 

Ao(T, p ) = -2T4(m/2.rrT)”’F($), 

Af(T, +) = F02 (m/2 . r rT)3 /2 [$m2T2F(~)+~m3TF(3)  +$m2T2F($)],  

AB(T, p )  = -$F02 ( ~ / ~ T T ) ~ / ~ ~ ~ T ~ F ( ; )  

and F(s) = F ( - z + ,  s )+F(-z- ,  s). It follows from (17) that the permittivity E D  and 
permeability p~ are equal to 

E D = ~ + A ? ( T , F ) ,  p ~ = [ l + A ; ( T , p ) l - ~ ,  

i.e., at small temperature and density the refractive index is less than 1. Using (17) 

f There are at least two places in the Universe (namely, the neutron star cores and the primeval cosmological 
matter) where densities several times greater than the nuclear one are predicted by the standard models. 
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one can also find the energy density of the EM field 

where the dependence of the EM field on r and t has been written explicitly (within, 
of course, the approximation under consideration). 

4. Electric current 

It was shown by Schwinger (1951) that at zero temperature the constant electric 
and/or magnetic fields (parallel to each other) can create an electron-positron pair 
and the probability of such a creation is equal to 

P(E, B )  = 1 - exp d4x Im Y H E ( E ,  B )  (19) 

This phenomenon may be understood on the semiclassical level. (Since the creation 
of an electron-positron pair is not a classical phenomenon this description is called 
the semiclassical one.) To this end let me consider Newton’s law with the Lorentz 
force on the right-hand side. Assume that at t = 0 and r = 0 an electron-positron pair 
is created (the coordinate frame is chosen in such a manner that E(/BIIO,) and the 
initial velocities of fermions are equal to zero. It can be immediately checked that 
the trajectories of the electron ti-’ and positron [I+’ are described by the equations 

(The EM field is assumed to be very weak, so this problem can be treated non- 
relativistically.) We see that for t > 0 the trajectories never intersect each other, 
therefore, the electron-positron pairs are created. 

In the case of the crossed EM field ( E I B ,  \El = lB1 = B )  the situation is quite 
different. The trajectories are described by the equations 

[\-I: x \ - ’ ( t )  = t +w-’sin ut, xi-’(t)=--w-’(l-Coswt), x i - ’ ( t ) = o ,  ( 2 1 ~ )  

(7’ : x : + ’ ( t )  = t +U- ’  sin ut, x : ” ( t )  =@-’(I -coswt), x y ’ ( t )  = 0 ,  (216) 

where w = le /B/m.  So we see that the trajectories Si‘’ intersect each other at the 
point t = x 1  = 27rw-l, x 2  = x 3  = 0, therefore, the annihilation of the electron-positron 
pair occurs. This means that the crossed EM field does not create the electron-positron 
pairs. At finite temperatures and densities the situation differs from the zero tem- 
perature case. The trajectories [?’ are disturbed since the projectiles are scattered 
by the real particles. (The interaction of the projectile with the virtual pairs does not 
change its momentum, i.e., the trajectory is undisturbed. This means that the creation 
of pairs occurs only at non-vanishing p,  as will be seen in the following.) Therefore, 
there exists a non-vanishing probability that the trajectories do not intersect each 
other, i.e., a non-vanishing probability of the pair creation. This phenomenon can be 
clarified from the quantum point of view. To this end we consider the Feynman 
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propagator of the electron in the crossed EM field:, 

aP " 1  K ;  [x, x'lE] = I 7 exp[-ip (x - x')] m + yp - ie (ya)k@ 7 d4P 
(2T) 

x (m - p 2  - ie)-'f,[kx, kx'lE] 
where 

f,[kx, kx'lE] = exp ( -i lo d8---[2epa8-e 1 2 2 2  U 8 +ie(yk)(yu)O]), 
k l x  - X ' I  

2Pk 
and a' = 0, E = -wa, B = k x Elw.  Taking advantage of the finite temperature and 
density methods one finds that the electric current ~ ' ( x )  is a complex quantity which 
causes the creation of the electron-positron pairs (Bialynicki-Birula and Bialynicka- 
Birula 1975). Moreover, as has been previously predicted using semiclassical consider- 
ations, the electric current vanishes at p = 0. The qualitative predictions of this 
statement are now studied and will be presented in due course. 

5. Effective potential 

The aim of this section is to derive the modification, caused by the finite temperature 
and density corrections, of the Coulomb potential. It is a well known fact that zero 
temperature quantum corrections to the classical Coulomb law at small distances 
change the form of the point charged-particle potential. (The modification of the 
Coulomb potential at small distances in the Johnson-Baker-Willey model of QED has 
been studied recently by Manoukian (1982).) These corrections were first calculated 
in 1935 (Serber 1935, Uehling 1935) and have led to the concept of the renormalisation 
group equations in quantum field theory (Gell-Mann and Low 1954). The renormalisa- 
tion group equations play the fundamental role in the asymptotically free theories 
(Gross and Wilczek i973a, b, Politzer 1973). At large distances, however, the zero 
temperature corrections to the Coulomb law vanish. 

In this section finite temperature and density effects are studied and it is shown 
that heat corrections change the Coulomb law at large distances and that the modified 
potential takes the form 

(24) 

in QED at the vanishing external current is defined to 

%(r) = ( e / r )  exp[-a(T, p)rI  

where the function a (T, p )  vanishes at T = 0. 

be (Bialynicki-Birula and Bialynicka-Birula 1975) 
The effective potential 

where d, and orp are the external electromagnetic potential and the photon propa- 
gator, respectively. Moreover, 

+ This is the Feynman propagator of the electron driven by the monochromatic wave of the amplitude E 
and the frequency w provided that 1El >>wFo/m. 
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and 

C[d ]=exp( i  5 dxLZ!$)[xld]) 

= exp( i I dx Tr[ln KF[x, x l d ]  - In KF[x, x lo]]) 

where KF and Y!&)[xId] are the Feynman propagator of the electron in the external 
EM field and the effective Lagrangian, respectively. At the vanishing external current 
and in the linear approximation (i.e., terms that depend nonlinearly both on d and 
% are neglected) it can be shown that 

d , ( z )  =,aP(z)-/ dzl d z z D f ; ~ ( z  - z ~ ) ~ T ~ " ( z I ,  Z Z ) % ~ ( Z Z )  (25) 

where rA" is the polarisation tensor at the vanishing external EM field and current. 

component, i.e. 
Further I will be concerned with the static potential with the non-vanishing time 

= g,,do!r). 

In this case (25) can be rewritten in the following form: 

&I,(/?) =&(k) + I dko s(k")&o(k)d~o(k)7i00(k) 

where 

dFo(k) = (k2+ie)- ' .  

7;O0(k) in second order of perturbation theory has the form 

For the Coulomb potential 

hence, at large distances (k2<c m 2 ) ,  we obtain 

$G(k)  = e/[k2 + t ; ' O ( o ) ] ,  

or in the configuration space, 

%G(r) = ( e / 4 r r )  e ~ p [ - ( 6 ~ ~ ( 0 ) ) ' / ~ r ]  (28) 

7 ; O n ( 0 )  = - 4 ( 2 ~ ) - " 2 a m 2 ( T / m ) " 2 F ( ~ )  + O(a2) .  

where at low temperature, 

(29) 
At the vanishing chemical potential and low temperature, with respect to the electron 
mass, we obtain the following Yukawa-type effective potential: 

(30) W r )  = ( e / r )  exp{-2m[(2a2~/mr)  e-2m'T]1'4r}, 

f- The mass generation in finite temperature QED and at p = 0 has been discussed by Babu Joseph (1982). 
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6. Comments on the anomalous magnetic moment 

This section is devoted to the calculations of the finite temperature corrections to the 
electron magnetic moment, that have been performed by Peressutti and Skagerstam 
(1982). In the textbooks (see e.g. Bialynicki-Birula and Bialynicka-Birula 1975) one 
can find that the energy correction due to the interaction of the electron with the 
weak external magnetic field is equal to 

(31) 

The first term describes the potential energy of the magnetic moment associated with 
the orbital moment of the electron in a magnetic field H and the second term describes 
the potential energy of the interaction of the anomalous magnetic moment of the 
electron, So we see that the operator of the magnetic moment p is given by the formula 

CL = (e/2m)(F1(0) +F2(O))c7 (32) 

where F1 and F2 are the form factors of the vertex function. At zero temperature 
F,(O) = 1, and the electron g factor is defined to be 

+ - ~ ~ 1 ( 0 ) + F 2 ( 0 ~ ) c 7 ) w ~ ~ ,  e s)f(p,s)  
2m 

g = 2(1 +Fz(O)). (33) 
This formula has been used by Peressutti and Skagerstam (1982) in their calculation 
of the temperature corrections to the electron g factor. However, it follows from (31) 
that at finite temperature one must also take into account the contribution coming 
from the F1 form-factor, i.e., at finite temperature and/or density the g factor is 
defined ambiguously. If in the experiment the energy shift induced by the anomalous 
magnetic moment is measured, then the g factor is defined to be 

(34) 

On the other hand if the ratio of the energy shifts induced by the orbital moment and 
the anomalous magnetic moment, respectively, is measured then the g factor is defined 
to be 

I 
g r , ,  = 2(Fi(O)+F2(0)). 

g:,, = 2(1 + F 2 ( O ) / F l ( O , ) .  (35) 
Since F1(0)  = 1 + O(a) ,  it follows from (35) that Peressutti and Skagerstam have 
calculated the g:,@ factor in second order of perturbation theory. 

Appendix 

The Feynman propagator of the electron in the constant EM field has been obtained 
in many papers. The reader who is interested in this subject is referred to Kaminski 
(1981~) where one can find the original references. In this appendix only the final 
result is given 

ds(m +p’A,) exp(-im2s --$iesg@”ffiV +iB,,p*p” +C) (‘41) 
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where the four-dimensional matrices A ,  B, C are equal to 

A = y +e-yfB, 

Moreover, B = (BE) and in the Lorentz frame where E and B are parallel to each other, 

B = (ef)-' tanh(efs), C = - $  Tr In cosh(efs ). 

10 0 0 €\ 

\ E  0 0 O /  

The unitary matrix U (U'U = UU' = I) that diagonalises f and the diagonalised matrix 
fD = U'fU are equal to 

/ l  0 0 - l \  / E  0 0 o \  

\ 1  0 0 11 \ o  0 0 -€/ 

The matrix U can be used to define an arbitrary function off, i.e., 

where cp*(x)  = i(cp ( x )  f cp ( - x ) ) .  With the help of this result one obtains 

iB,,,pfip" =isE-l(pi-p:) tanhE -isq-l(p:+p;) tan 7 ,  

e'= (cosh E cos q)-', 

(Y + Y tanh(efs ))P 

= ( ~ o - ~ 3 t a n h ~ ) y ~ + ( p l + ~ ~ t a n t 7 ) ~ ' + ( ~ ~ - ~ 1  tan q)y2 '  

+ ( ~ 3  -PO tanh &)y3, 

where E =eEs and q =eBs. Taking advantage of properties of the Dirac matrices 
one finds (the notation is taken from (Bjorken and Drell 1965)) 

exp(-tiescTwufp,,) = ~ + i z a ' ~ + i ~ w ~ ~ + i y ~ v  

where 

X = COS q cosh E ,  

Y =cos q sinh E, 

V = sin q sinh E ,  

2 = sin q cosh E. 

Assembling these results one can write the Feynman propagator in the following form: 

k ~ [ p l E ,  B ]  = i lo ds exp(-im2s + i K 1  tanh ~ ( p g - p : )  
m 

- i n - '  tan q ( p : + p : ) ) ( m X + v , y "  + i f , d "  + i a , ~ ~ ~ ~ + i m V y ~ ) ,  (A2) 
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where 

t,, = tm[Z(g,1gv2-gfi2gv1) + 

uo =po(X - Y tanh E )  -p3(X tanh E - Y), 

u1  = p l ( X + Z  tan q ) + p 2 ( X  tan q -Z) ,  

u2  = -p l (X tan q -Z) +p2(X  + Z  tan q), 

u3  = -po(X tanh E - Y) +p3(X - Y tanh E ) ,  

a o = p o ( V - Z  tanhE)-p3(V tanhE - Z ) ,  

a1 = p l ( V -  Y tan q)+p2(V t a n 7  + Y ) ,  

a ~ = - p l ( V t a n q + Y ) + p 2 ( V - Y  t anq) ,  

a3 = -po( V tanh E - Z )  +p3(  V -Z tanh E ) .  

Taking advantage of (A2) one can calculate the electric current. Using the finite 
temperature and density methods one finds: 

W 

j ”  = -eT d3p3 Tr y”EFIII. + 2 ~ i T ( n  +$),PIE,  B ]  

“ d s  I 3/2 ,,=-a (47ris) 
= -4esGT 1 coth ~ ) l ’ ~ q  cot q 

x [JA + 27riT(n +:)I exp{iss tanh E [JA + 2 ~ i T ( n  + ;)I2}. (A3) 

Comparing (A3) with (3) one arrives at 

i” = 8% ( a l a @  )-Ye,@, B, T, p 1. (A41 

Since the charge density is proportional to the number density, (A4) is followed by (7).  
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